3.707 \(\int \tan ^4(c+d x) (a+b \tan (c+d x))^n \, dx\)

Optimal. Leaf size=297 \[ \frac{\left (2 a^2-b^2 (n+2) (n+3)\right ) (a+b \tan (c+d x))^{n+1}}{b^3 d (n+1) (n+2) (n+3)}-\frac{\sqrt{-b^2} (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a-\sqrt{-b^2}}\right )}{2 b d (n+1) \left (a-\sqrt{-b^2}\right )}+\frac{\sqrt{-b^2} (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a+\sqrt{-b^2}}\right )}{2 b d (n+1) \left (a+\sqrt{-b^2}\right )}-\frac{2 a \tan (c+d x) (a+b \tan (c+d x))^{n+1}}{b^2 d (n+2) (n+3)}+\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{n+1}}{b d (n+3)} \]

[Out]

((2*a^2 - b^2*(2 + n)*(3 + n))*(a + b*Tan[c + d*x])^(1 + n))/(b^3*d*(1 + n)*(2 + n)*(3 + n)) - (Sqrt[-b^2]*Hyp
ergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a - Sqrt[-b^2])]*(a + b*Tan[c + d*x])^(1 + n))/(2*b*(a -
 Sqrt[-b^2])*d*(1 + n)) + (Sqrt[-b^2]*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a + Sqrt[-b^2])
]*(a + b*Tan[c + d*x])^(1 + n))/(2*b*(a + Sqrt[-b^2])*d*(1 + n)) - (2*a*Tan[c + d*x]*(a + b*Tan[c + d*x])^(1 +
 n))/(b^2*d*(2 + n)*(3 + n)) + (Tan[c + d*x]^2*(a + b*Tan[c + d*x])^(1 + n))/(b*d*(3 + n))

________________________________________________________________________________________

Rubi [A]  time = 0.519569, antiderivative size = 297, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3566, 3647, 3631, 3485, 712, 68} \[ \frac{\left (2 a^2-b^2 (n+2) (n+3)\right ) (a+b \tan (c+d x))^{n+1}}{b^3 d (n+1) (n+2) (n+3)}-\frac{\sqrt{-b^2} (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a-\sqrt{-b^2}}\right )}{2 b d (n+1) \left (a-\sqrt{-b^2}\right )}+\frac{\sqrt{-b^2} (a+b \tan (c+d x))^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a+\sqrt{-b^2}}\right )}{2 b d (n+1) \left (a+\sqrt{-b^2}\right )}-\frac{2 a \tan (c+d x) (a+b \tan (c+d x))^{n+1}}{b^2 d (n+2) (n+3)}+\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{n+1}}{b d (n+3)} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^4*(a + b*Tan[c + d*x])^n,x]

[Out]

((2*a^2 - b^2*(2 + n)*(3 + n))*(a + b*Tan[c + d*x])^(1 + n))/(b^3*d*(1 + n)*(2 + n)*(3 + n)) - (Sqrt[-b^2]*Hyp
ergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a - Sqrt[-b^2])]*(a + b*Tan[c + d*x])^(1 + n))/(2*b*(a -
 Sqrt[-b^2])*d*(1 + n)) + (Sqrt[-b^2]*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a + Sqrt[-b^2])
]*(a + b*Tan[c + d*x])^(1 + n))/(2*b*(a + Sqrt[-b^2])*d*(1 + n)) - (2*a*Tan[c + d*x]*(a + b*Tan[c + d*x])^(1 +
 n))/(b^2*d*(2 + n)*(3 + n)) + (Tan[c + d*x]^2*(a + b*Tan[c + d*x])^(1 + n))/(b*d*(3 + n))

Rule 3566

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^m*(c + d
*Tan[e + f*x])^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3631

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[A - C, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[
{a, b, e, f, A, C, m}, x] && NeQ[A*b^2 + a^2*C, 0] &&  !LeQ[m, -1]

Rule 3485

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[(a + x)^n/(b^2 + x^2), x], x
, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]

Rule 712

Int[((d_) + (e_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m, 1/(a + c*x^2
), x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[m]

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rubi steps

\begin{align*} \int \tan ^4(c+d x) (a+b \tan (c+d x))^n \, dx &=\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{b d (3+n)}+\frac{\int \tan (c+d x) (a+b \tan (c+d x))^n \left (-2 a-b (3+n) \tan (c+d x)-2 a \tan ^2(c+d x)\right ) \, dx}{b (3+n)}\\ &=-\frac{2 a \tan (c+d x) (a+b \tan (c+d x))^{1+n}}{b^2 d (2+n) (3+n)}+\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{b d (3+n)}+\frac{\int (a+b \tan (c+d x))^n \left (2 a^2+\left (2 a^2-b^2 (2+n) (3+n)\right ) \tan ^2(c+d x)\right ) \, dx}{b^2 (2+n) (3+n)}\\ &=\frac{\left (2 a^2-b^2 (2+n) (3+n)\right ) (a+b \tan (c+d x))^{1+n}}{b^3 d (1+n) (2+n) (3+n)}-\frac{2 a \tan (c+d x) (a+b \tan (c+d x))^{1+n}}{b^2 d (2+n) (3+n)}+\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{b d (3+n)}+\int (a+b \tan (c+d x))^n \, dx\\ &=\frac{\left (2 a^2-b^2 (2+n) (3+n)\right ) (a+b \tan (c+d x))^{1+n}}{b^3 d (1+n) (2+n) (3+n)}-\frac{2 a \tan (c+d x) (a+b \tan (c+d x))^{1+n}}{b^2 d (2+n) (3+n)}+\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{b d (3+n)}+\frac{b \operatorname{Subst}\left (\int \frac{(a+x)^n}{b^2+x^2} \, dx,x,b \tan (c+d x)\right )}{d}\\ &=\frac{\left (2 a^2-b^2 (2+n) (3+n)\right ) (a+b \tan (c+d x))^{1+n}}{b^3 d (1+n) (2+n) (3+n)}-\frac{2 a \tan (c+d x) (a+b \tan (c+d x))^{1+n}}{b^2 d (2+n) (3+n)}+\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{b d (3+n)}+\frac{b \operatorname{Subst}\left (\int \left (\frac{\sqrt{-b^2} (a+x)^n}{2 b^2 \left (\sqrt{-b^2}-x\right )}+\frac{\sqrt{-b^2} (a+x)^n}{2 b^2 \left (\sqrt{-b^2}+x\right )}\right ) \, dx,x,b \tan (c+d x)\right )}{d}\\ &=\frac{\left (2 a^2-b^2 (2+n) (3+n)\right ) (a+b \tan (c+d x))^{1+n}}{b^3 d (1+n) (2+n) (3+n)}-\frac{2 a \tan (c+d x) (a+b \tan (c+d x))^{1+n}}{b^2 d (2+n) (3+n)}+\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{b d (3+n)}-\frac{b \operatorname{Subst}\left (\int \frac{(a+x)^n}{\sqrt{-b^2}-x} \, dx,x,b \tan (c+d x)\right )}{2 \sqrt{-b^2} d}-\frac{b \operatorname{Subst}\left (\int \frac{(a+x)^n}{\sqrt{-b^2}+x} \, dx,x,b \tan (c+d x)\right )}{2 \sqrt{-b^2} d}\\ &=\frac{\left (2 a^2-b^2 (2+n) (3+n)\right ) (a+b \tan (c+d x))^{1+n}}{b^3 d (1+n) (2+n) (3+n)}+\frac{b \, _2F_1\left (1,1+n;2+n;\frac{a+b \tan (c+d x)}{a-\sqrt{-b^2}}\right ) (a+b \tan (c+d x))^{1+n}}{2 \sqrt{-b^2} \left (a-\sqrt{-b^2}\right ) d (1+n)}-\frac{b \, _2F_1\left (1,1+n;2+n;\frac{a+b \tan (c+d x)}{a+\sqrt{-b^2}}\right ) (a+b \tan (c+d x))^{1+n}}{2 \sqrt{-b^2} \left (a+\sqrt{-b^2}\right ) d (1+n)}-\frac{2 a \tan (c+d x) (a+b \tan (c+d x))^{1+n}}{b^2 d (2+n) (3+n)}+\frac{\tan ^2(c+d x) (a+b \tan (c+d x))^{1+n}}{b d (3+n)}\\ \end{align*}

Mathematica [C]  time = 2.09864, size = 249, normalized size = 0.84 \[ -\frac{(a+b \tan (c+d x))^{n+1} \left (2 (-b+i a) (b+i a) \left (2 a^2-b^2 \left (n^2+5 n+6\right )\right )+i b^3 (n+2) (n+3) (a+i b) \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a-i b}\right )-b^3 (n+2) (n+3) (b+i a) \, _2F_1\left (1,n+1;n+2;\frac{a+b \tan (c+d x)}{a+i b}\right )-2 b^2 (n+1) (n+2) (a-i b) (a+i b) \tan ^2(c+d x)+4 a b (n+1) (a-i b) (a+i b) \tan (c+d x)\right )}{2 b^3 d (n+1) (n+2) (n+3) (a-i b) (a+i b)} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^4*(a + b*Tan[c + d*x])^n,x]

[Out]

-((a + b*Tan[c + d*x])^(1 + n)*(2*(I*a - b)*(I*a + b)*(2*a^2 - b^2*(6 + 5*n + n^2)) + I*(a + I*b)*b^3*(2 + n)*
(3 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a - I*b)] - b^3*(I*a + b)*(2 + n)*(3 + n)*Hyp
ergeometric2F1[1, 1 + n, 2 + n, (a + b*Tan[c + d*x])/(a + I*b)] + 4*a*(a - I*b)*(a + I*b)*b*(1 + n)*Tan[c + d*
x] - 2*(a - I*b)*(a + I*b)*b^2*(1 + n)*(2 + n)*Tan[c + d*x]^2))/(2*(a - I*b)*(a + I*b)*b^3*d*(1 + n)*(2 + n)*(
3 + n))

________________________________________________________________________________________

Maple [F]  time = 0.227, size = 0, normalized size = 0. \begin{align*} \int \left ( \tan \left ( dx+c \right ) \right ) ^{4} \left ( a+b\tan \left ( dx+c \right ) \right ) ^{n}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^4*(a+b*tan(d*x+c))^n,x)

[Out]

int(tan(d*x+c)^4*(a+b*tan(d*x+c))^n,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+b*tan(d*x+c))^n,x, algorithm="maxima")

[Out]

integrate((b*tan(d*x + c) + a)^n*tan(d*x + c)^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \tan \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right )^{4}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+b*tan(d*x+c))^n,x, algorithm="fricas")

[Out]

integral((b*tan(d*x + c) + a)^n*tan(d*x + c)^4, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**4*(a+b*tan(d*x+c))**n,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+b*tan(d*x+c))^n,x, algorithm="giac")

[Out]

integrate((b*tan(d*x + c) + a)^n*tan(d*x + c)^4, x)